
Interface Contract Enforcement for Improvement of
Computational Quality of Service (CQoS) for Scientific

Components

[Extended Abstract]

Li Li
Argonne National Laboratory
Mathematics and Computer

Science Division
likli@mcs.anl.gov

Tamara L. Dahlgren
Lawrence Livermore National

Laboratory
Center for Applied Scientific

Computing
dahlgrenl@llnl.gov

Lois Curfman McInnes
Argonne National Laboratory
Mathematics and Computer

Science Division
curfman@mcs.anl.gov

Boyana Norris
Argonne National Laboratory
Mathematics and Computer

Science Division
norris@mcs.anl.gov

ABSTRACT
This paper describes recent investigations into improving the
quality and performance of component-based scientific soft-
ware. Our approach merges work on Computational Quality
of Service (CQoS) with enforceable semantic annotations, in
the form of interface contracts, to enhance the adaptivity of
component-based applications and improve the usability of
CQoS components.

Component interfaces, as advanced by the Common Compo-
nent Architecture (CCA) Forum, enable easy access to com-
plex software packages for high-performance scientific com-
puting. However, many challenges remain in ensuring that
components are configured and used correctly in the context
of long-running simulations. Interface contracts have proven
to be helpful for ensuring correct usage. Additional work on
Computational Quality of Service (CQoS) exploits compo-
nent automation, including capabilities for plugging and un-
plugging components during execution, to help application
scientists choose among alternative algorithmic implemen-
tations and parameters, thereby creating new opportunities
to enhance the performance of CCA applications.

The integration of CQoS and interface contracts is described.
Two application use cases involving solver components are
also presented.

Keywords

Common Component Architecture, Computational Quality
of Service, Interface Contracts

1. INTRODUCTION
As computational science progresses toward ever more re-
alistic multiphysics and multiscale applications, no single
research group can effectively develop, select, or tune all of
the components in a given application. Furthermore, no sin-
gle tool, solver, or solution strategy can seamlessly span the
entire spectrum efficiently. Component-based software engi-
neering approaches help manage some of the complexity of
developing such large scientific applications.

The Common Component Architecture (CCA) [1] defines a
component software engineering approach specifically tar-
geted at high-performance computing (HPC) applications.
The challenge then becomes how to make sound choices from
among the available implementations and parameters, with
suitable tradeoffs among performance, accuracy, mathemat-
ical consistency, and reliability, both when initially com-
posing and configuring a component application, and when
dynamically adapting to respond to continuous changes in
component requirements and execution environments.

To at least partially automate the process of characteriz-
ing the performance of component applications and select-
ing and configuring particular implementations, we have in-
troduced the concept of computational quality of service
(CQoS) [9], or the automatic composition, substitution, and
dynamic reconfiguration of components to suit a particular
computational purpose and environment. CQoS embodies
the familiar concept of quality of service in networking as
well as the ability to specify and manage characteristics of
the application in a way that adapts to the changing (compu-
tational) environment. The two main facets of CQoS tools,
therefore, are measurement and analysis infrastructure and
control infrastructure for dynamic component replacement
and domain-specific decision making. This paper focuses on



the performance and metadata management and analysis
support provided by the CQoS infrastructure.

Because scientific components are developed by people with
different backgrounds and training, it is not safe to assume
that everyone uses the same level of rigor in their software
development practices - especially in the case of research
software. Interface contract enforcement [4,5] is intended to
help scientists gain confidence in software built from compo-
nents. Hence, executable interface contracts provide some
assurances that interface failures can be caught regardless of
the programming discipline used by component implemen-
tors.

In this paper, we focus on interface contract enforcement
within the context of CQoS. We present different types of
CQoS-contracts and their uses in two parallel application
contexts.

2. CONTRACT ENFORCEMENT IN CQOS
CQoS expands on traditional QoS ideas by considering app-
ication-specific metrics, or metadata, which enable the anno-
tation and characterization of component performance. Be-
fore automating the selection of component instances, how-
ever, one must be able to collect and analyze performance
information and related metadata. The CQoS database in-
terface [8] has been designed to support the management
and analysis of performance and application metadata, so
the mapping of a problem to an implementation with the
potential of yielding the best performance can be accom-
plished statically or at runtime. There are two types of com-
ponents for storing and querying CQoS performance data
and metadata. The database component provides general-
purpose interfaces for storing and accessing data in a physi-
cal database. Comparator interfaces compare and/or match
properties of two problems under user-specified conditions.
We incorporated PerfExplorer [6] into CQoS analysis in-
frastructure to support performance analysis and decison-
making for runtime adaptivity. PerfExplorer supports the
construction of a runtime parameter recommendation sys-
tem, using classification capabilities in the Weka [12] data-
mining package.

With database and analysis support, our CQoS approach to
automating parallel application configuration involves three
phases: collection of performance data in a training database,
performance analysis, and adaptive application composition.
The training data for analysis is generated by executing
the application multiple times, varying key parameters that
have an effect on the total runtime. After the performance
and associated metadata are stored and queried through the
general CQoS database component interfaces, PerfExplorer
loads the data and builds a classifier from it. For produc-
tion application runs, the classifier is loaded into a CCA
component. A appropriate parameter setting is obtained by
querying the classifier with the current values of application-
specific metadata. These values are matched to the classifi-
cation properties to find the best class selection for the pa-
rameters. Furthermore, our comparator components serve
as filters when searching for appropriate parameter settings
in the database. A detailed description of our CQoS ap-
proach to runtime adaption is presented in [7].

Figure 1: A contract-enhanced CQoS component
application

Enforceable interface contracts provide a uniform mecha-
nism for documenting behaviors and constraints associated
with components, automatically verifying component im-
plementation conformance to the documented specification,
and checking that components are used by applications in a
manner consistent with their design specifications. Support
for semantic annotations has been integrated into compo-
nent interface definition, thereby extending basic method
signatures for the expression of interface contracts indepen-
dent of the implementation languages of the associated com-
ponents. Currently, the specification of pre- and post-conditions
is supported and tested for some languages. Pre- and post-
conditions specify conditions that must be satisfied prior to
and immediately after invocation of component interfaces,
respectively. In the context of CQoS, the contracts can be
enforced to validate component arguments, evaluate compo-
nent results, and invoke CQoS database and analysis func-
tions in an integrated manner without modifying component
internals.

2.1 Integrate Interface Contracts and CQoS
Figure 1 illustrates how the interface contracts are enforced
and integrated into CQoS infrastructure. In an adaptive
component application, the generic component interfaces are
extended with semantic contracts that specify the behav-
ioral constraints of using the components. Beside checking
the validity of component use, the contracts can be help-
ful to support adaptive runtime decision-making. The con-
tracts can store component performance and meta-data, as
shown in red arrows in the figure, and query for tuning sug-
gestion, in blue arrows, through CQoS database and anal-
ysis functions. Easy control (turned off or on at runtime,
e.g., for performance reasons) of contracts makes it easier to
perform adaptivity-related checks. Moreover, encapsulating
such checks in individual component specifications facilitates
the component-specific adaptative decision-making.

2.2 CQoS Interface Contract Types



CQoS interface contract types falls into two categories ac-
cording to their functions.

• Argument validator. The contracts, mostly precondi-
tion clauses, ensure that appropriate component argu-
ments and parameters are used. They raise violation
exceptions when the conditions are not met.

• Performance data collector and evaluator. The con-
tracts collect and evaluate a component’s performance
in post-conditions. Postcondition violations are raised
as exceptions when the component performance is prob-
lematic.

To handle contract-raised exceptions in the case of pre- and
post-condition violations and to perform CQoS-related tasks,
two classes of functions are needed:

• Proxy that handles external calls to CQoS functions.
The functions invoke database and analysis capabili-
ties in CQoS, e.g., call database functions to store and
manage performance and meta-data, and query a Perf-
Explorer classifier for parameter tuning information.

• Adaptive decision maker. Based on tuning suggestions
returned from CQoS analysis facilities or application-
specific adaptation heuristics, the exception handlers
make adaptation decision at runtime. The functions
are invoked in response to problematic performance of
a component execution to adjust component parame-
ters, reconfigure, substitute, or recompose components
to be used in subsequent iterations of program run.

3. APPLICATION USE CASES
Interface contracts, described in Section 2, have been em-
ployed in two different application contexts.

Towards Optimal Petascale Simulations (TOPS).
TOPS [3, 10] solver components provide high-level access
to a parallel (non-)linear algebraic solvers for large linear
and nonlinear algebraic systems arising from either struc-
tured or unstructured meshes. The common interfaces em-
ployed by TOPS solver components enable easy access to
suites of independently developed algorithms and implemen-
tations. The challenge then becomes how, during runtime,
to make the best choices for reliability, accuracy, and per-
formance. We have been extending TOPS components to
incorporate new CQoS capabilities to facilitate appropriate
choices for algorithms and parameters of TOPS linear and
nonlinear solver components. A important task is to incor-
porate interface contract enforcement capabilities into the
TOPS component specification to improve performance and
robustness. First of all, contracts are enforced to ensure
suitable TOPS component algorithms and parameters for
nonlinear PDE applications. Second, contracts perform the
performance check and evaluation as needed by CQoS anal-
ysis and trigger relevant adaptivity action(s) by using CQoS
functions. Figure 2 shows a TOPS functions, computeResid-
ual that uses pre- and post- conditions to check validity of
arguments and result.

Figure 2: An example TOPS component function
that uses pre- and post-condition checks.

Flow in a Driven Cavity. Driven cavity flow combines
lid-driven flow and buoyancy-driven flow in a two-dimensional
rectangular cavity. We use a velocity-vorticity formulation
of the Navier-Stokes and energy equations, which we dis-
cretize using a standard finite-difference scheme with a five-
point stencil for each component on a uniform Cartesian
mesh; see [2] for a detailed problem description. Driven
cavity is an important parallel, nonlinear partial differen-
tial equation (PDE) application in the CQoS testbed. We
use the contracts described in Section 2 to implement adap-
tive linear solver components for the application. The con-
tracts evaluate linear solver performance in a post-condition
(whether they fail or succeed using the solver), as displayed
in top right box in Figure 3. An exception is raised to han-
dle solver failure and to change the linear solver to be used
for subsequent iterations. The exception handler is shown
in bottom right code segment in Figure 3.

4. CONCLUSION
Behavioral semantic contracts have been added to scientific
component specifications for validating component param-
eters and improving performance and robustness. These
contract-enhanced components provide easy interfaces to CQoS
infrastructure, which has the goal of enabling automated
component selection and (re-)configuration of component-
based scientific applications.

5. ACKNOWLEDGMENTS
We thank all members of the CCA Forum for stimulating
discussions on high-performance scientific software. This
work was supported in part by the Office of Advanced Scien-
tific Computing Research via the Scientific Discovery through
Advanced Computing (SciDAC) initiative [11], Office of Sci-
ence, U.S. Department of Energy, under Contracts DE-AC02-
06CH11357 and DE-AC52-07NA27344.

6. REFERENCES
[1] D. E. Bernholdt, B. A. Allan, R. Armstrong,

F. Bertrand, K. Chiu, T. L. Dahlgren, K. Damevski,
W. R. Elwasif, T. G. W. Epperly, M. Govindaraju,
D. S. Katz, J. A. Kohl, M. Krishnan, G. Kumfert,
J. W. Larson, S. Lefantzi, M. J. Lewis, A. D. Malony,



Figure 3: Interface specification and implementation in adaptive Driven Cavity that involve contract use and
exception handling.

L. C. McInnes, J. Nieplocha, B. Norris, S. G. Parker,
J. Ray, S. Shende, T. L. Windus, and S. Zhou. A
component architecture for high-performance scientific
computing. International Journal of High-Performance
Computing Applications, pages 215–229, 2006.

[2] T. Coffey, C. Kelley, and D. Keyes. Pseudo-transient
continuation and differential algebraic equations.
SIAM J. Sci. Comp, 25:553–569, 2003.

[3] D. Keyes (PI). Terascale Optimal PDE Simulations
(TOPS) Center. http://tops-scidac.org/, 2006.

[4] T. L. Dahlgren. Performance-Driven Interface
Contract Enforcement for Scientific Components. PhD
thesis, University of California, Davis, One Shields
Avenue, Davis, CA, 95616, 2008.

[5] T. L. Dahlgren and P. T. Devanbu. Improving
scientific software component quality through
assertions. In Proceedings of the Second International
Workshop on Software Engineering for High
Performance Computing System Applications, pages
73–77, St. Louis, Missouri, May 2005.

[6] K. A. Huck, A. D. Malony, S. Shende, and A. Morris.
Scalable, automated performance analysis with tau
and perfexplorer. In Parallel Computing (ParCo),
Aachen, Germany, 2007.

[7] L. Li, J. P. Kenny, M. Wu, K. Huck, and et al.
Adaptive application composition in quantum
chemistry. In Proceedings of the 5th International
Conference on the Quality of Software Architectures
(QoSA 2009), 2009.

[8] L. Li, B. Norris, H. Johansson, L. McInnes, and
J. Ray. Component infrastructure for managing
performance data and runtime adaptation of parallel
applications. In Proceedings of PARA08 (9th
International Workshop on State-of-the-Art in
Scientific and Parallel Computing), 2008.

[9] B. Norris, J. Ray, R. Armstrong, L. C. McInnes, D. E.
Bernholdt, W. R. Elwasif, A. D. Malony, and
S. Shende. Computational quality of service for
scientific components. In Proceedings of International
Symposium on Component-Based Software
Engineering (CBSE7), Edinburgh, Scotland, 2004.

[10] B. Smith et al. TOPS Solver Components.
http://www.mcs.anl.gov/scidac-tops/

solver-components/tops.html, 2005.

[11] U. S. Dept. of Energy. SciDAC Initiative homepage.
http://www.osti.gov/scidac/, 2006.

[12] I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan
Kaufmann, Second edition, 2005.



The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a
U.S. Department of Energy Office of Science labo-
ratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.


